3.24.38 \(\int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^2} \, dx\) [2338]

Optimal. Leaf size=160 \[ -\frac {\sqrt {a+b x+c x^2}}{e (d+e x)}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{e^2}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{2 e^2 \sqrt {c d^2-b d e+a e^2}} \]

[Out]

arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))*c^(1/2)/e^2-1/2*(-b*e+2*c*d)*arctanh(1/2*(b*d-2*a*e+(-b*e+2
*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/e^2/(a*e^2-b*d*e+c*d^2)^(1/2)-(c*x^2+b*x+a)^(1/2)/e/(e
*x+d)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {746, 857, 635, 212, 738} \begin {gather*} -\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{2 e^2 \sqrt {a e^2-b d e+c d^2}}-\frac {\sqrt {a+b x+c x^2}}{e (d+e x)}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(d + e*x)^2,x]

[Out]

-(Sqrt[a + b*x + c*x^2]/(e*(d + e*x))) + (Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/e^2
- ((2*c*d - b*e)*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])
])/(2*e^2*Sqrt[c*d^2 - b*d*e + a*e^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 746

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 1))), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x+c x^2}}{(d+e x)^2} \, dx &=-\frac {\sqrt {a+b x+c x^2}}{e (d+e x)}+\frac {\int \frac {b+2 c x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{2 e}\\ &=-\frac {\sqrt {a+b x+c x^2}}{e (d+e x)}+\frac {c \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{e^2}-\frac {(2 c d-b e) \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{2 e^2}\\ &=-\frac {\sqrt {a+b x+c x^2}}{e (d+e x)}+\frac {(2 c) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{e^2}+\frac {(2 c d-b e) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{e^2}\\ &=-\frac {\sqrt {a+b x+c x^2}}{e (d+e x)}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{e^2}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{2 e^2 \sqrt {c d^2-b d e+a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.79, size = 161, normalized size = 1.01 \begin {gather*} -\frac {\frac {e \sqrt {a+x (b+c x)}}{d+e x}+\frac {(2 c d-b e) \sqrt {-c d^2+b d e-a e^2} \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{c d^2+e (-b d+a e)}+\sqrt {c} \log \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )}{e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(d + e*x)^2,x]

[Out]

-(((e*Sqrt[a + x*(b + c*x)])/(d + e*x) + ((2*c*d - b*e)*Sqrt[-(c*d^2) + b*d*e - a*e^2]*ArcTan[(Sqrt[c]*(d + e*
x) - e*Sqrt[a + x*(b + c*x)])/Sqrt[-(c*d^2) + e*(b*d - a*e)]])/(c*d^2 + e*(-(b*d) + a*e)) + Sqrt[c]*Log[b + 2*
c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)]])/e^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(674\) vs. \(2(140)=280\).
time = 0.79, size = 675, normalized size = 4.22

method result size
default \(\frac {-\frac {e^{2} \left (c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{\left (e^{2} a -b d e +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {e \left (b e -2 c d \right ) \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}+\frac {\left (b e -2 c d \right ) \ln \left (\frac {\frac {b e -2 c d}{2 e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}\right )}{2 e \sqrt {c}}-\frac {\left (e^{2} a -b d e +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a -2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}\right )}{2 e^{2} a -2 b d e +2 c \,d^{2}}+\frac {2 c \,e^{2} \left (\frac {\left (2 c \left (x +\frac {d}{e}\right )+\frac {b e -2 c d}{e}\right ) \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}{4 c}+\frac {\left (\frac {4 c \left (e^{2} a -b d e +c \,d^{2}\right )}{e^{2}}-\frac {\left (b e -2 c d \right )^{2}}{e^{2}}\right ) \ln \left (\frac {\frac {b e -2 c d}{2 e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}\right )}{8 c^{\frac {3}{2}}}\right )}{e^{2} a -b d e +c \,d^{2}}}{e^{2}}\) \(675\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

1/e^2*(-1/(a*e^2-b*d*e+c*d^2)*e^2/(x+d/e)*(c*(x+d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)+
1/2*e*(b*e-2*c*d)/(a*e^2-b*d*e+c*d^2)*((c*(x+d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/2
/e*(b*e-2*c*d)*ln((1/2/e*(b*e-2*c*d)+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d^
2)/e^2)^(1/2))/c^(1/2)-(a*e^2-b*d*e+c*d^2)/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+1
/e*(b*e-2*c*d)*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d
^2)/e^2)^(1/2))/(x+d/e)))+2*c/(a*e^2-b*d*e+c*d^2)*e^2*(1/4*(2*c*(x+d/e)+1/e*(b*e-2*c*d))/c*(c*(x+d/e)^2+1/e*(b
*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/8*(4*c*(a*e^2-b*d*e+c*d^2)/e^2-1/e^2*(b*e-2*c*d)^2)/c^(3/2)
*ln((1/2/e*(b*e-2*c*d)+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))
))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e*b*d+%e^2*a>0)', see `
assume?` for

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 334 vs. \(2 (141) = 282\).
time = 5.34, size = 1426, normalized size = 8.91 \begin {gather*} \left [\frac {2 \, {\left (c d^{3} + a x e^{3} - {\left (b d x - a d\right )} e^{2} + {\left (c d^{2} x - b d^{2}\right )} e\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - {\left (2 \, c d^{2} - b x e^{2} + {\left (2 \, c d x - b d\right )} e\right )} \sqrt {c d^{2} - b d e + a e^{2}} \log \left (-\frac {8 \, c^{2} d^{2} x^{2} + 8 \, b c d^{2} x + {\left (b^{2} + 4 \, a c\right )} d^{2} + 4 \, \sqrt {c d^{2} - b d e + a e^{2}} {\left (2 \, c d x + b d - {\left (b x + 2 \, a\right )} e\right )} \sqrt {c x^{2} + b x + a} + {\left (8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{2} + 4 \, a b d + {\left (3 \, b^{2} + 4 \, a c\right )} d x\right )} e}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) - 4 \, {\left (c d^{2} e - b d e^{2} + a e^{3}\right )} \sqrt {c x^{2} + b x + a}}{4 \, {\left (c d^{3} e^{2} + a x e^{5} - {\left (b d x - a d\right )} e^{4} + {\left (c d^{2} x - b d^{2}\right )} e^{3}\right )}}, -\frac {{\left (2 \, c d^{2} - b x e^{2} + {\left (2 \, c d x - b d\right )} e\right )} \sqrt {-c d^{2} + b d e - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} {\left (2 \, c d x + b d - {\left (b x + 2 \, a\right )} e\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c^{2} d^{2} x^{2} + b c d^{2} x + a c d^{2} + {\left (a c x^{2} + a b x + a^{2}\right )} e^{2} - {\left (b c d x^{2} + b^{2} d x + a b d\right )} e\right )}}\right ) - {\left (c d^{3} + a x e^{3} - {\left (b d x - a d\right )} e^{2} + {\left (c d^{2} x - b d^{2}\right )} e\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) + 2 \, {\left (c d^{2} e - b d e^{2} + a e^{3}\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c d^{3} e^{2} + a x e^{5} - {\left (b d x - a d\right )} e^{4} + {\left (c d^{2} x - b d^{2}\right )} e^{3}\right )}}, -\frac {4 \, {\left (c d^{3} + a x e^{3} - {\left (b d x - a d\right )} e^{2} + {\left (c d^{2} x - b d^{2}\right )} e\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + {\left (2 \, c d^{2} - b x e^{2} + {\left (2 \, c d x - b d\right )} e\right )} \sqrt {c d^{2} - b d e + a e^{2}} \log \left (-\frac {8 \, c^{2} d^{2} x^{2} + 8 \, b c d^{2} x + {\left (b^{2} + 4 \, a c\right )} d^{2} + 4 \, \sqrt {c d^{2} - b d e + a e^{2}} {\left (2 \, c d x + b d - {\left (b x + 2 \, a\right )} e\right )} \sqrt {c x^{2} + b x + a} + {\left (8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{2} + 4 \, a b d + {\left (3 \, b^{2} + 4 \, a c\right )} d x\right )} e}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) + 4 \, {\left (c d^{2} e - b d e^{2} + a e^{3}\right )} \sqrt {c x^{2} + b x + a}}{4 \, {\left (c d^{3} e^{2} + a x e^{5} - {\left (b d x - a d\right )} e^{4} + {\left (c d^{2} x - b d^{2}\right )} e^{3}\right )}}, -\frac {{\left (2 \, c d^{2} - b x e^{2} + {\left (2 \, c d x - b d\right )} e\right )} \sqrt {-c d^{2} + b d e - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} {\left (2 \, c d x + b d - {\left (b x + 2 \, a\right )} e\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c^{2} d^{2} x^{2} + b c d^{2} x + a c d^{2} + {\left (a c x^{2} + a b x + a^{2}\right )} e^{2} - {\left (b c d x^{2} + b^{2} d x + a b d\right )} e\right )}}\right ) + 2 \, {\left (c d^{3} + a x e^{3} - {\left (b d x - a d\right )} e^{2} + {\left (c d^{2} x - b d^{2}\right )} e\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + 2 \, {\left (c d^{2} e - b d e^{2} + a e^{3}\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c d^{3} e^{2} + a x e^{5} - {\left (b d x - a d\right )} e^{4} + {\left (c d^{2} x - b d^{2}\right )} e^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^2,x, algorithm="fricas")

[Out]

[1/4*(2*(c*d^3 + a*x*e^3 - (b*d*x - a*d)*e^2 + (c*d^2*x - b*d^2)*e)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4
*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - (2*c*d^2 - b*x*e^2 + (2*c*d*x - b*d)*e)*sqrt(c*d^2 - b*d
*e + a*e^2)*log(-(8*c^2*d^2*x^2 + 8*b*c*d^2*x + (b^2 + 4*a*c)*d^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*(2*c*d*x + b
*d - (b*x + 2*a)*e)*sqrt(c*x^2 + b*x + a) + (8*a*b*x + (b^2 + 4*a*c)*x^2 + 8*a^2)*e^2 - 2*(4*b*c*d*x^2 + 4*a*b
*d + (3*b^2 + 4*a*c)*d*x)*e)/(x^2*e^2 + 2*d*x*e + d^2)) - 4*(c*d^2*e - b*d*e^2 + a*e^3)*sqrt(c*x^2 + b*x + a))
/(c*d^3*e^2 + a*x*e^5 - (b*d*x - a*d)*e^4 + (c*d^2*x - b*d^2)*e^3), -1/2*((2*c*d^2 - b*x*e^2 + (2*c*d*x - b*d)
*e)*sqrt(-c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sqrt(-c*d^2 + b*d*e - a*e^2)*(2*c*d*x + b*d - (b*x + 2*a)*e)*sqrt
(c*x^2 + b*x + a)/(c^2*d^2*x^2 + b*c*d^2*x + a*c*d^2 + (a*c*x^2 + a*b*x + a^2)*e^2 - (b*c*d*x^2 + b^2*d*x + a*
b*d)*e)) - (c*d^3 + a*x*e^3 - (b*d*x - a*d)*e^2 + (c*d^2*x - b*d^2)*e)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2
- 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) + 2*(c*d^2*e - b*d*e^2 + a*e^3)*sqrt(c*x^2 + b*x + a))/
(c*d^3*e^2 + a*x*e^5 - (b*d*x - a*d)*e^4 + (c*d^2*x - b*d^2)*e^3), -1/4*(4*(c*d^3 + a*x*e^3 - (b*d*x - a*d)*e^
2 + (c*d^2*x - b*d^2)*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c
)) + (2*c*d^2 - b*x*e^2 + (2*c*d*x - b*d)*e)*sqrt(c*d^2 - b*d*e + a*e^2)*log(-(8*c^2*d^2*x^2 + 8*b*c*d^2*x + (
b^2 + 4*a*c)*d^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*(2*c*d*x + b*d - (b*x + 2*a)*e)*sqrt(c*x^2 + b*x + a) + (8*a*
b*x + (b^2 + 4*a*c)*x^2 + 8*a^2)*e^2 - 2*(4*b*c*d*x^2 + 4*a*b*d + (3*b^2 + 4*a*c)*d*x)*e)/(x^2*e^2 + 2*d*x*e +
 d^2)) + 4*(c*d^2*e - b*d*e^2 + a*e^3)*sqrt(c*x^2 + b*x + a))/(c*d^3*e^2 + a*x*e^5 - (b*d*x - a*d)*e^4 + (c*d^
2*x - b*d^2)*e^3), -1/2*((2*c*d^2 - b*x*e^2 + (2*c*d*x - b*d)*e)*sqrt(-c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sqrt
(-c*d^2 + b*d*e - a*e^2)*(2*c*d*x + b*d - (b*x + 2*a)*e)*sqrt(c*x^2 + b*x + a)/(c^2*d^2*x^2 + b*c*d^2*x + a*c*
d^2 + (a*c*x^2 + a*b*x + a^2)*e^2 - (b*c*d*x^2 + b^2*d*x + a*b*d)*e)) + 2*(c*d^3 + a*x*e^3 - (b*d*x - a*d)*e^2
 + (c*d^2*x - b*d^2)*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)
) + 2*(c*d^2*e - b*d*e^2 + a*e^3)*sqrt(c*x^2 + b*x + a))/(c*d^3*e^2 + a*x*e^5 - (b*d*x - a*d)*e^4 + (c*d^2*x -
 b*d^2)*e^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b x + c x^{2}}}{\left (d + e x\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(e*x+d)**2,x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(d + e*x)**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(e*x+d)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(t_

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x+a}}{{\left (d+e\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(1/2)/(d + e*x)^2,x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(d + e*x)^2, x)

________________________________________________________________________________________